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Abstract
Mean reversion in stock markets has been an open question for the decades it has been meticulously tested. 
This study first aims at shedding further light on this unsettled issue by assessing mean reversion in a broad 
Turkish stock data via a non-parametric and model-free methodology. Variance ratio computations and 
distribution-free statistical tests based on randomization are used on dollar and lira denominated nominal, 
real and excess returns of Borsa Istanbul equity market. As a strong mean reversion is apparent in the 
empirical tests, the study secondly tries to identify a possible cause of this apparent anomaly. CAPM-based 
equity risk premium estimations generated via two-pass cross-sectional regressions reveal that the mean 
reversion might be explained by the dynamic nature of equity risk-premium. The results indicate that the 
mean reversion in Turkish equity market is a result of time-varying behavior of rational investors rather 
than market inefficiency.
Keywords: Equity Risk Premium, Market Efficiency, Mean Reversion, Variance Ratio, Borsa Istanbul
JEL Classification: G1, G14, G15, C14

Özet
Pay piyasalarında ortalamaya dönme eğilimi, geçtiğimiz kırk yılda birçok çalışma tarafından sürekli 
olarak gözlemlendiği gibi birçok çalışma tarafından da varlığı reddedilmiş bir olgudur. Bu çalışmanın ilk 
amacı, güncel bir veri seti kullanarak Borsa İstanbul’da ortalamaya dönme eğilimini, parametrik olmayan 
ve modelden bağımsız bir metodoloji ile test ederek bu konunun aydınlatılmasına katkıda bulunmaktır. 
Bu doğrultuda, yerel pay piyasasının lira ve dolar bazındaki nominal, reel ve fazla getirileri üzerinde 
varyans oranı hesaplamaları yapılmış ve rasgeleleştirmeye dayanan, dağılımdan bağımsız bir istatistiksel 
test uygulanmıştır. Ampirik testlerde güçlü bir ortalamaya dönme eğilimi görüldüğünden, bu çalışma 
ikinci olarak bu anomalinin nedenlerini tespit etmeyi amaçlamaktadır. CAPM modeline dayalı iki geçişli 

* Ömer Eren, PhD Candidate, Boğaziçi University, Department of Management, Bebek ISTANBUL 34342,  
E-mail: omer.eren@boun.edu.tr

** Cenk C. Karahan, Assistant Professor, Boğaziçi University, Department of Management, Bebek ISTANBUL 34342, 
E-mail: cenk.karahan@boun.edu.tr

https://orcid.org/0000-0002-1625-2304
https://orcid.org/0000-0002-2686-6959


Ömer EREN • Cenk C. KARAHAN

24

kesitsel regresyonlarla üretilen sermaye risk primleri tahminleri, ortalamaya dönme eğiliminin, sermaye 
risk primlerinin dinamik doğasından ileri geldiğini ortaya koymaktadır. Sonuçlara göre Türkiye sermaye 
piyasasındaki ortalamaya dönme eğilimi pazarın etkin olmamasından değil, rasyonel yatırımcıların 
davranışlarının zamanla değişmesiyle açıklanabilir.
Anahtar Kelimeler: Piyasa Risk Primi; Etkin Piyasa Hipotezi; Ortalamaya Dönme; Varyans Oranı; Borsa 
İstanbul
JEL Sınıflandırması: G1, G14, G15, C14

1. Introduction

Understanding the dynamics of stock prices has been of particular interest for decades to academics 
and practitioners alike. The attraction is obvious for practitioners as it opens the door to endless 
profits if one can predict the future direction of stock prices. However, the most dominant theory 
established by academics claims the randomness and unpredictability of stock returns, striking a 
blow to many hoping for riches. Nonetheless, the diligent tries to establish a pattern in stock returns 
continue. The academic literature is rife with studies both claiming randomness and refuting it 
with statistical tests. This study is one aimed at contributing to this literature with its test of mean 
reversion pattern and a possible explanation for its existence in Turkish stock market, one of the 
major emerging markets.

The classical finance literature postulates that financial markets are efficient, in that prices reflect 
all available information and one cannot predict the future returns using that information (Fama, 
1970). Although, not exactly the same, Efficient Market Hypothesis just described make a strong case 
for random walk theory (Malkiel, 1973). This theory suggests that returns in consecutive period are 
independently distributed with no serial correlations. If the opposite was true and autocorrelations 
between holding-period returns are different from zero, then it would imply there is a certain degree 
of predictability in stock prices.

Serial correlation patterns may take two distinct forms. If consistently positive, they point towards 
a unidirectional trend on stock prices, hence result in momentum in the markets. In contrast, if the 
serial correlations are consistently negative, they point towards a reversal in prices, implying mean 
reversion. In either case, an arbitrageur can exploit the knowledge for financial gains; employing 
either momentum or contrarian strategies. These observations promise to outperform the market by 
employing two completely opposite strategies. However, this seemingly contradictory finding is not 
entirely out of question, as serial correlations can display different properties for different holding 
periods.

Establishing mean reversion or aversion in a time series is an important step on its own in examining 
dynamics of a time series. A natural progression would be delving deeper to understand the 
underlying reasons behind the behavior of the time series. In understanding the dynamics of security 
prices, the question boils down to the fundamental issue of market efficiency. Do these results mean 
markets are inefficient or the prices actually reflect rational behavior of the investors? In other words, 
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is mean reversion/aversion an anomaly or not? This issue remains an open question in academic 
literature to this day with fervent supporters on both sides.

For example, Fama and French (1988) argue that observed serial correlations may be the result 
of “time varying equilibrium expected returns generated by rational investor behavior” (p.266). 
Moreover, Conrad and Kaul (1988) argue, while ex-post returns may display serial autocorrelations, 
expected return processes are stationary, which validates the earlier argument.

Mean reversion and aversion in stock returns are two of the major anomalies violating market 
efficiency arguments. However, their existence is not even indisputably established. Therefore, 
we aim to contribute to this literature in an important emerging market with a robust and novel 
methodology. We further aim to offer some insight to test if time-varying risk premium might be 
behind the observed mean reversion. As such, this study can be considered firstly as an empirical test 
of existence of mean reversion in Borsa Istanbul stock returns, and secondly if time-varying equity 
premia might be behind the observed mean reversion.

2. Literature Review

Mean reversion in stock returns have been first investigated by DeBondt and Thaler (1985), who 
labeled them as price reversals. They found that the portfolio of winner stocks underperforms the 
portfolio of loser stocks in the long run; an observation they attribute to investor overreaction, in one 
of the seminal contributions to behavioral finance. Chan (1988) challenged DeBondt and Thaler’s 
(1985) results by claiming that when risks are correctly readjusted, the price reversal lose economic 
and statistical significance. In a test relying on an asset pricing model like CAPM, the results were 
inconclusive, partly due to the fact that it was also a test of the model.

The tests developed in the subsequent years in testing serial correlations paved the way for a robust, 
model-free test of mean reversion. French and Roll (1986) reported negative serial correlations in 
daily returns. Cochrane (1988) computed variance ratios in his study with the methodology being 
adopted by subsequent studies in an effort to test random walk theory. The idea of variance ratios as 
test of randomness and mean reversion proved robust, as it is unencumbered with an asset-pricing 
model. Based on variance ratios, Lo and MacKinlay (1988) reported significant evidence of positive 
autocorrelations in the weekly data and therefore rejected the random walk hypothesis. Fama and 
French (1988) decomposed returns into two random processes and observed clear patterns of mean 
reversion. Both studies demonstrated that mean reversion weakens as the company size grows. In a 
comprehensive study, Poterba and Summers (1989) reported variance ratios separately for nominal, 
real and excess returns for international equity markets. Their results displayed mean aversion or 
momentum in horizons shorter than one year and mean reversion in horizons longer than one year.

Kim, Nelson and Startz (1991) contributed to the literature by improving the statistical tests of 
variance ratios. In their effort to do that, they created empirical distributions of variance ratios by 
randomization and tested observed variance ratios against this empirical distribution; thus creating 
a test statistic that is free of any distribution assumption. With their powerful tests at hand, Kim et 
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al. (1991) concluded that mean reversion was specific to a time-period in pre-war US stocks and not 
observed in more recent data.

The conflicting results of earlier studies have not been resolved in later studies. Richards (1997), 
Balvers, Wu and Gilliland (2000), Chaudhuri and Wu (2003), Gropp (2004) and Mukherji (2011) are 
among the studies that reported strong evidence of mean reversion in international stock returns. On 
the other hand, Spierdijk, Bikker and van den Hoek (2012) tested mean reversion across 18 OECD 
countries with an unusually large data set, covering the 1900-2009 period and were able to reject 
random walk in favor of mean reversion for only 8 countries out of 18. Eren and Karahan (2020) 
tested mean reversion in dollar denominated returns of international equity markets and concluded 
that the statistical significance of mean reversion is questionable. Jegadeesh (1990, 1991) studied 
seasonality in returns and found evidence that the month of January was responsible for the mean 
reversion in the U.S. stocks.

With the conflicting results, the attention returns to explaining the underlying reasons of the empirical 
findings. Fama and French (1986) assert that negative serial correlation in returns could be due to 
market inefficiency or it might be the result of time varying expected returns generated by rational 
investor behavior. They call this a “critical but unresolvable issue” (p.3). Lo and MacKinlay (1988) argue 
that rejection of the random walk hypothesis does not mean there is an inefficiency in stock-price 
formation. Poterba and Summers (1989) lean more towards the inefficiency argument by saying noise 
trading provides a plausible explanation for the predictability in stock prices.

Ball and Kothari (1989) stand on the opposite side of the argument by claiming that negative serial 
correlation in returns are mostly caused by changing relative risks and thus expected returns. Conrad 
and Kaul’s (1988) assertion that variation in expected returns constitute a large portion of return 
variances also supports the proposition that return predictability of stocks does not contradict with 
market efficiency. Furthermore, Ferson and Harvey (1991) conclude that time variation in expected 
risk premiums is mostly responsible for the predictability of equity returns and their findings 
“strengthen the evidence that the predictability of returns is attributable to time-varying, rationally 
expected returns” (p.412).

Empirical evidence about return predictability and mean reversion in the Turkish equity market 
is awfully scarce. There are only a handful of papers that touch on this issue and none of them 
employ the techniques used in this paper, such as variance ratios. Sevim, Yıldız and Akkoç (2007) 
and Barak (2008) test the overreaction hypothesis in the Turkish market by comparing the returns of 
winner and loser portfolios for 3 and 5-year time periods respectively. Their findings suggest loser 
portfolios consistently outperform winner portfolios over the next period which suggests a strong 
tendency of mean reversion in stock returns. Muslumov, Aras and Kurtulus (2003) test the random-
walk hypothesis in Turkey using a generalized auto-regressive conditional heteroscedastic (GARCH) 
model. They use individual stock returns and claim 65% of their sample space do not exhibit random 
walk behavior, which they interpret as evidence against weak-form efficiency. Assaf (2006) investigates 
long memory characteristics of stock returns in Egypt, Morocco, Jordan and Turkey by estimating 
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rescaled range statistics and rescaled variance statistics. He does not find significant persistence in 
Turkey but he claims volatility series demonstrate long memory in all markets. Cakici and Topyan 
(2013) explore the return predictability of Turkish stocks with cross-sectional regressions. Because 
they do not perform time series analysis, most of their results is irrelevant for our purpose. However, 
one of their independent variables is momentum which they found to possess no real predictive 
power.

In light of all of these conflicting arguments and lack of evidence for the local market, the goal of this 
study is exploring the mean reversion phenomenon in Turkish stock market. We first test the existence 
of mean reversion in returns using variance ratio and statistical tests based on randomization. We 
later investigate if predictable variation in stock returns can be linked to the variation in expected 
returns by testing the mean reversion on dynamic estimates of the equity risk premium, in effect 
testing the suggestion that time-varying expected returns might be responsible for the observed 
anomalies in stock returns.

3. Data and Methodology

The data used in this study comes from multiple sources. The preliminary tests are conducted on 
Borsa Istanbul stock index (BIST 100) denominated both in US Dollars and local currency Turkish 
Lira, with nominal, real and excess returns. BIST Index data is retrieved from Datastream database.1 
The consumer price index used in inflation computations for Turkey2 and United States3 are compiled 
by OECD. US risk-free rates are provided by Ibbotson Associates4 based on one-month Treasury bill 
rate. Turkish risk-free rates are based on OECD’s short-term interest rate data5 compiled for the 
country.

Individual stock data6 for Borsa Istanbul is provided by data vendor Finnet. The stock data are 
monthly returns of all common stocks that are traded on Borsa Istanbul during the 30-year period 
between January 1990 and December 2019. In beta calculations, we include at least 12 monthly 
observations, going back to January 1989. The list of stocks include all listed and delisted firms to 
avoid survivorship bias, but exclude funds, totaling 554 individual shares across 30 years. These 
returns are adjusted to reflect dividends, capital changes and any other corporate actions like splits, 
spin-offs, mergers, delistings and bankruptcies.

1 BIST 100 index data is retrieved from Refinitiv (formerly Thomson Reuters) Datastream database.
2 Organization for Economic Co-operation and Development, Consumer Price Index: All Items for Turkey, retrieved from 

Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/TURCPIALLMINMEI
3 Organization for Economic Co-operation and Development, Consumer Price Index: All Items for the US, retrieved from 

Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/CPALTT01USM657N
4 Provided by Ibbotson Associates and retrieved from Prof. Ken French’s Data Library; https://mba.tuck.dartmouth.edu/

pages/faculty/ken.french/data_library.html
5 Organization for Economic Co-operation and Development, Leading Indicators OECD: Component series: Short-term 

interest rate: Original series for Turkey, retrieved from Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/
series/TURLOCOSTORSTM

6 The stock price and market capitalization data are retrieved from Finnet Analiz Expert platform.
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Figure 1: Cumulative Returns for Various Market Return Measures

These figures display the cumulative value of 100† or $100 invested in the market in at the beginning of January 
1990. BIST 100 data refers to Turkish Lira and US Dollar denominated headline index reported by Borsa Istan-
bul. Market return refers to the value-weighted lira denominated average returns of all stocks as computed by 
the authors. Real returns are computed using the monthly inflation in the respective currencies.

The market return used in regressions is the value-weighted average return of available stocks for 
each period as computed by the authors, which is a more appropriate measure of market return than 
the often used free-float weighted market indices. Market and portfolio return calculations are all 
based on discrete returns and rates. However, all returns, interest rates and inflation are converted 
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to continuously compounded logarithmic rates, in line with the assumptions of variance ratios as 
discussed below.

Table 1: Summary Statistics of Monthly Data

Index Obs. Average Standard Deviation Minimum Maximum Sharpe Ratio
BIST 100 – TRY NOMINAL 360 2.37% 12.75% -49.49% 58.66% -0.13
BIST 100 – TRY REAL 360 0.04% 12.74% -53.36% 52.88% -
BIST 100 – TRY EXCESS 360 -1.64% 12.77% -56.89% 54.05% -
BIST 100 – USD NOMINAL 360 0.19% 14.60% -54.95% 54.07% 0.00
BIST 100 – USD REAL 360 0.00% 14.59% -55.35% 54.07% -
BIST 100 – USD EXCESS 360 -0.03% 14.60% -55.33% 53.63% -
MARKET – NOMINAL 360 2.71% 12.32% -50.00% 59.35% -0.11
MARKET – REAL 360 0.37% 12.29% -53.88% 53.57% -
MARKET – EXCESS 360 -1.31% 12.30% -57.41% 54.74% -
Risk-free rate – TRY 360 4.17% 4.05% 0.43% 27.05% -
Risk-free rate – USD 360 0.22% 0.19% 0.00% 0.69% -
Inflation – TR 360 2.40% 2.57% -1.44% 23.38% -
Inflation – USA 360 0.20% 0.33% -1.92% 1.22% -

This table reports summary statistics of the monthly data used in the study for the 30-year period between January 1990 and 
December 2019. BIST 100 data refers to Turkish Lira and US Dollar denominated headline index reported by Borsa Istanbul. 
Market return refers to the value-weighted lira denominated average returns of all stocks as computed by the authors. Real 
and excess returns are computed using the inflation and risk-free rates in the respective currencies.

3.1. Variance Ratios

Variance ratio computations follow the methodology offered by Poterba and Summers (1989). 
The statistical tests, however, are based on randomization with no distribution assumption. The 
underlying motivation in our selection is to make our nonparametric tests unencumbered by any 
assumption about asset pricing model and return distribution. Hence, we can claim the results are 
very intuitive to interpret and unbiased in their conclusions.

Under the assumption of continuously compounded log returns, k-period return is the sum of each 
1-period return:

(1) 

The market return used in regressions is the value-weighted average return of available stocks 
for each period as computed by the authors, which is a more appropriate measure of market 
return than the often used free-float weighted market indices. Market and portfolio return 
calculations are all based on discrete returns and rates. However, all returns, interest rates and 
inflation are converted to continuously compounded logarithmic rates, in line with the 
assumption of variance ratios as discussed below. 
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As a variation of this statistic, we take the 12 month as basis in order to differentiate between the 
short term and long term variance ratios: 
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Cochrane (1988) reinterprets variance ratios as linear combination of sample autocorrelations:  
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where ρ̂(𝑗𝑗) is sample autocorrelation at lag 𝑗𝑗 . This representation allows us to make direct 
inferences about the time-series properties of the returns. If variance ratios are significantly 
smaller than 1, that will lead us to infer that the time-series in question is mean-reverting with 
negative autocorrelations. When this reinterpretation is applied to the measure with 12-month as 
basis, the variance ratio becomes: 

(7) 𝑉𝑉𝑅𝑅(𝑘𝑘) ≅ 1 +  2 ∑ 𝑗𝑗 (𝑘𝑘−12
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(8) 𝐸𝐸[ρ̂(𝑗𝑗) ] = −1 (𝑇𝑇 − 𝑗𝑗)⁄  

where ρ̂(𝑗𝑗) is the sample autocorrelation at lag 𝑗𝑗 and 𝑇𝑇 is the sample size. With the appropriate 
bias correction, the variance ratio of equation 7 can be written as:  
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The variance ratios in this study follow the methodology in equation 9 in a rolling window of 
overlapping time series, as is the standard in the literature. However, these numbers by 
themselves divulge little information. We have to test if they are significantly different from 
unity in order to reach conclusions with statistical clarity. For that purpose, we use a robust 
testing method proposed by Kim et al. (1991) based on randomization, which does not make any 
assumptions about the underlying distribution. This method relies on shuffling the time series of 
returns randomly for 1000 times to remove effect of possible autocorrelations in the data. The 
collection of variance ratios computed for each random shuffle becomes the de-facto distribution, 
against which we test the variance ratio of the actual return series. If the variance ratio of the 
actual data lies below or above a certain percentile of the empirical distribution, the null 
hypothesis of random walk can be rejected. 
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The variance ratios in this study follow the methodology in equation 9 in a rolling window of 
overlapping time series, as is the standard in the literature. However, these numbers by 
themselves divulge little information. We have to test if they are significantly different from 
unity in order to reach conclusions with statistical clarity. For that purpose, we use a robust 
testing method proposed by Kim et al. (1991) based on randomization, which does not make any 
assumptions about the underlying distribution. This method relies on shuffling the time series of 
returns randomly for 1000 times to remove effect of possible autocorrelations in the data. The 
collection of variance ratios computed for each random shuffle becomes the de-facto distribution, 
against which we test the variance ratio of the actual return series. If the variance ratio of the 
actual data lies below or above a certain percentile of the empirical distribution, the null 
hypothesis of random walk can be rejected. 
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The variance ratios in this study follow the methodology in equation 9 in a rolling window of 
overlapping time series, as is the standard in the literature. However, these numbers by 
themselves divulge little information. We have to test if they are significantly different from 
unity in order to reach conclusions with statistical clarity. For that purpose, we use a robust 
testing method proposed by Kim et al. (1991) based on randomization, which does not make any 
assumptions about the underlying distribution. This method relies on shuffling the time series of 
returns randomly for 1000 times to remove effect of possible autocorrelations in the data. The 
collection of variance ratios computed for each random shuffle becomes the de-facto distribution, 
against which we test the variance ratio of the actual return series. If the variance ratio of the 
actual data lies below or above a certain percentile of the empirical distribution, the null 
hypothesis of random walk can be rejected. 
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The variance ratios in this study follow the methodology in equation 9 in a rolling window of 
overlapping time series, as is the standard in the literature. However, these numbers by 
themselves divulge little information. We have to test if they are significantly different from 
unity in order to reach conclusions with statistical clarity. For that purpose, we use a robust 
testing method proposed by Kim et al. (1991) based on randomization, which does not make any 
assumptions about the underlying distribution. This method relies on shuffling the time series of 
returns randomly for 1000 times to remove effect of possible autocorrelations in the data. The 
collection of variance ratios computed for each random shuffle becomes the de-facto distribution, 
against which we test the variance ratio of the actual return series. If the variance ratio of the 
actual data lies below or above a certain percentile of the empirical distribution, the null 
hypothesis of random walk can be rejected. 

The variance ratios in this study follow the methodology in equation 9 in a rolling window of overlapping 
time series, as is the standard in the literature. However, these numbers by themselves divulge little 
information. We have to test if they are significantly different from unity in order to reach conclusions 
with statistical clarity. For that purpose, we use a robust testing method proposed by Kim et al. (1991) 
based on randomization, which does not make any assumptions about the underlying distribution. 
This method relies on shuffling the time series of returns randomly for 1000 times to remove the effect 
of possible autocorrelations in the data. The collection of variance ratios computed for each random 
shuffle becomes the de-facto distribution, against which we test the variance ratio of the actual return 
series. If the variance ratio of the actual data lies below or above a certain percentile of the empirical 
distribution, the null hypothesis of random walk can be rejected.
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3.2. Time–Varying Equity Risk Premium

We test the properties of time varying equity risk premium to explore the possible reasons behind the 
observed mean reversion in stock returns. In order to capture the time variation in equity risk premia, 
one has to use a dynamic asset pricing model. We employ the workhorse of the literature, Capital 
Asset Pricing Model (CAPM) by Sharpe (1964) and Lintner (1965) in a simple dynamic setting. 
We use a direct estimation of conditional betas and risk premia using rolling window regressions, a 
method similar to the one employed by Lewellen and Nagel (2006). The advantage of this method is 
its simplicity and the fact that one does not have to identify a set of state variables for conditioning 
information, which are usually unknown to the investors.

Beta values of individual stocks are calculated through a first-pass of standard time-series regression,

(10) 

3.2. Time–Varying Equity Risk Premium 

We test the properties of time varying equity risk premium to explore the possible reasons behind 
the observed mean reversion in stock returns. In order to capture the time variation in equity risk 
premia, one has to use a dynamic asset pricing model. We employ the workhorse of the literature, 
Capital Asset Pricing Model (CAPM) by Sharpe (1964) and Lintner (1965) in a simple dynamic 
setting. We use a direct estimation of conditional betas and risk premia using rolling window 
regressions, a method similar to the one employed by Lewellen and Nagel (2006). The advantage 
of this method is its simplicity and the fact that one does not have to identify a set of state 
variables for conditioning information, which are usually unknown to the investors.    

Beta values of individual stocks are calculated through a first-pass of standard time-series 
regression, 

(10) 𝑟𝑟𝑖𝑖,𝑡𝑡 − 𝑟𝑟𝑓𝑓,𝑡𝑡 = 𝛼𝛼𝑖𝑖,𝑡𝑡 + �̂�𝛽𝑖𝑖 × (𝑟𝑟𝑚𝑚,𝑡𝑡 − 𝑟𝑟𝑓𝑓,𝑡𝑡) + 𝜀𝜀𝑖𝑖,𝑡𝑡                             

where 𝑟𝑟𝑖𝑖,𝑡𝑡 is the return of stock i at time t, 𝛼𝛼𝑖𝑖,𝑡𝑡 is the abnormal returns of stock i at time t, �̂�𝛽𝑖𝑖 is 
the stock’s estimated beta which indicates how closely it follows the market, 𝑟𝑟𝑚𝑚,𝑡𝑡 is the return of 
the market portfolio, 𝑟𝑟𝑓𝑓,𝑡𝑡 is the risk-free return at time t and 𝜀𝜀𝑖𝑖𝑡𝑡  is the error term.  

Each month from January 1990 through December 2019, betas of the individual stocks are 
estimated with the regression model above. We use the past 60 months’ data, which is the 
standard in the literature, with at least 12 months of uninterrupted data prior to beta estimation, 
taking us back to January 1989 to initiate the analysis. Figure 2 tracks how many stocks meet 
this data requirement and are eventually used in the analysis each month. After estimating the 
betas of the stocks that meet the data requirement; in every month, a cross-sectional OLS 
regression is performed which regresses the monthly returns of the stocks against their estimated 
betas, where the second-pass regression yields the coefficient 𝜆𝜆, an estimate for the equity risk 
premium in the stock market.     
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One of the most important decisions when performing such an analysis is whether to use 
individual stocks or to form portfolios. While the likes of Black, Jensen and Scholes (1972), 
Fama and Macbeth (1973) and Ferson and Harvey (1991) form portfolios to perform cross 
sectional regressions; there are others such as Ang, Liu and Schwarz (2008) and Chordia, Goyal 
and Shanken (2015) who advocate the use of individual stocks. Fama and Macbeth (1973) say 
more precise beta estimates can be made when portfolios are used instead of individual stocks. 
On the other hand, Ang, et al. (2008) argue that more precise estimates of beta do not lead to 
better estimates of the risk premia. They claim that variance of the risk premia estimates 
decreases when individual stocks are used as opposed to portfolios. Nevertheless, both 
approaches have been adopted in our analysis for the sake of robustness.  

Using the individual stocks as observations, a monthly equity risk premium estimation is 
obtained for each of the 360 months in our analysis period. This enables us to see the time 
variation in expected risk premia, priced by the classical CAPM model. In order to test the 
robustness of risk premia estimation to the selection between individual stocks and portfolios, a 
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of robustness.
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Using the individual stocks as observations, a monthly equity risk premium estimation is obtained for 
each of the 360 months in our analysis period. This enables us to see the time variation in expected 
risk premia, priced by the classical CAPM model. In order to test the robustness of risk premia 
estimation to the selection between individual stocks and portfolios, a methodology very similar to 
that of Fama and Macbeth (1973) is also used. Each month, 20 value-weighted portfolios are formed 
using the already estimated betas of individual stocks. After ranking individual stocks based on their 
Beta values and classifying them into 20 Beta-ranked portfolios, portfolio betas are estimated to be 
the weighted average of stock betas following Blume (1970). We choose to compute portfolio betas 
as a simple average of stock betas for simplicity and not to limit the dataset further by performing 
additional regressions for portfolio betas like Fama and Macbeth (1973). As the results demonstrate, 
the equity risk premia are very similar across methods, with little difference in quantitative values.

Figure 2: Number of Stocks Used in Equity Risk Premium Estimations

This figure tracks the number of stocks for each month that satisfy the data requirements to be included in ti-
me-varying equity risk premium calculations. Each stock should have a price history of at least 12 months to be 
included. Funds are excluded as they are redundant securities.

Table 2: Summary Statistics of Monthly Time-Varying Equity Risk Premia and Excess Market 
Returns

Method Obs. Average Standard Deviation Minimum Maximum
ERP w/ Portfolios 360 -0.39% 8.00% -76.57% 25.39%

ERP w/ Individual Stocks 360 -0.35% 8.31% -85.51% 26.77%
Excess Market Return 360 -1.31% 12.30% -57.41% 54.74%

This table reports the summary statistics of the time-varying equity risk premium and realized excess returns per month for 
the 30-year period between January 1990 and December 2019. The risk premia are computed via cross sectional regressions 
with either 20 Beta-based portfolios or individual stocks. Excess market return is the difference between the market return, 
the value-weighted lira denominated average returns of all stocks as computed by the authors, and the Turkish lira risk-free 
rate.
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Figure 3: Time-Varying Equity Risk Premia and Excess Market Returns

These figures display the time-varying equity risk premium and realized excess returns per month for the 30-year period 
between January 1990 and December 2019. The risk premia are computed via cross sectional regressions with either 20 
Beta-based portfolios (upper panel) or individual stocks (lower panel). The excess returns, which are akin to realized or 
ex-post market premiums, are based on value-weighted average return of all stocks and Turkish-lira risk-free rate.

4. Results

Upon inspection of the summary statistics of returns reported in Table 1 and visualized in Figure 1, 
the glaring differences in market return measures become very apparent. The upper graph reveals 
that a broader market measure might capture the realities of returns better than BIST 100 Index. 
BIST 100 is an index that is based on free-float market capitalization. The limited number of stocks 
and the free-float weights underestimate the market return. Our market return measure calculated 
as value-weighted average return of all available stocks outperform the BIST 100 index by 24 basis 
points on average each month. The cumulative effect of that difference over 30 years is more than 
three times in cumulative returns, both nominal and real, as shown in the graph.



Ömer EREN • Cenk C. KARAHAN

34

The impact of inflation on stock returns can be seen in the visual representation of real returns 
as compared to nominal returns. The same effect can be surmised from comparison of USD 
denominated returns with those of comparable lira denominated ones. The nominal returns 
generate a very healthy cumulative return, yet when measured with inflation-adjustment, the 
returns seem to be moving in a lateral fashion. The difference between nominal and real returns 
are understandable as Turkey struggled with hyperinflation for most of the last three decades. 
However, considering the 30-year time period, this non-performance of stocks in real terms 
is a dramatic statement. The average real returns hovering slightly above zero makes the stock 
market an unattractive investment. In fact, risk-free interest rate in Turkey offers higher average 
returns than the stock market, making the equity excess returns negative on average.

Equity risk premia computed via cross sectional regressions provide a measure of expected excess 
returns. The cross-sectional regressions are conducted with either 20 Beta-based portfolios or 
individual stocks. In each cross sectional regression, Betas estimated with past data are regressed 
with next month’s returns to yield the coefficient that estimates the expected equity risk premium. 
The results indicate a volatile equity risk premium as can be seen in Figure 3. The volatility of 
estimates with individual stocks are slightly higher than the estimates with portfolios, as expected. 
The average equity risk premium over 30 years is slightly below zero at – 0.35% and – 0.39%, verifying 
the observation above that the Turkish stock market does not offer a premium over risk-free return. 
The excess returns are reported in Table 3 again to offer a comparison to equity risk premium. As low 
and volatile as expectations are, the realized excess returns are even lower and more volatile. Overall 
picture reveals that time-varying equity risk premia behave very differently across time. The high 
volatility of earlier years in the analysis is replaced with a relatively more stable premium in the latter 
part of the analysis.

The difference in the currency base reveals the extent of inflation’s and currency depreciations effect 
in a dramatic fashion. We next focus on the dynamics of each market return measure via variance 
ratio calculations before we look into equity risk premium dynamics.

4.1. Mean Reversion in Market Returns

As a starting point of our mean reversion analyses, we report below the variance ratios for three 
separate measures of market return in nominal, real and excess monthly log-returns, respectively. 
Table 3 reports the actual variance ratios for several holding periods, as well as the p-values 
obtained against the distribution of randomized ordering of returns for all return types and all 
three market return measures. Since the p-values are obtained from an empirical distribution via 
randomization, it is free from the shortcomings of assuming a standard distribution like normal.

According to Table 2 and associated Figures 3 and 5, the nominal lira-denominated market returns 
display an obvious and consistent trend of mean aversion. The variance ratios are significantly larger 
than unity at 5% level for BIST 100 and value-weighted market return in holding periods longer than 6 
years and 4 years, respectively. These findings reveal a strong momentum in nominal markets returns, 
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which is expected in a market with high levels of inflation. Comparatively, variance ratios for dollar-
denominated BIST 100 returns in Figure 4 reveal a mean reversion with statistical significance for 
most holding periods longer than 12 months. Since dollar inflation figures are low compared to lira 
inflation, it manifests itself in the currency base effect on stock market returns and variance ratios.

Table 3: Variance Ratios and Statistical Tests of Significance for Borsa Istanbul Market Returns

1 
month

6 
months

24 
months

36 
months

48 
months

72 
months

96 
months

120 
months

PANEL A: TURKISH LIRA DENOMINATED BIST 100
Nominal Variance Ratio 0.935 0.957 1.008 1.190 1.433 1.872 2.280 2.441

p-value 0.356 0.313 0.546 0.799 0.898 0.948 0.964 0.956
Real Variance Ratio 1.133 1.044 0.709 0.522 0.439 0.277 0.260 0.145

p-value 0.713 0.652 0.023 0.018 0.016 0.008 0.017 0.002
Excess Variance Ratio 0.873 0.933 0.902 0.920 1.044 1.357 1.785 2.060

p-value 0.215 0.231 0.291 0.441 0.641 0.840 0.926 0.946
PANEL B: US DOLLAR DENOMINATED BIST 100

Nominal Variance Ratio 1.105 1.084 0.688 0.585 0.566 0.430 0.384 0.302
p-value 0.655 0.744 0.017 0.026 0.073 0.077 0.116 0.100

Real Variance Ratio 1.108 1.083 0.685 0.577 0.554 0.415 0.369 0.286
p-value 0.659 0.731 0.018 0.042 0.073 0.068 0.098 0.062

Excess Variance Ratio 1.094 1.077 0.690 0.577 0.550 0.406 0.367 0.294
p-value 0.626 0.732 0.028 0.040 0.079 0.065 0.103 0.096

PANEL C: VALUE-WEIGHTED MARKET RETURNS
Nominal Variance Ratio 0.861 0.918 1.079 1.312 1.595 2.097 2.509 2.615

p-value 0.205 0.189 0.703 0.890 0.959 0.980 0.980 0.972
Real Variance Ratio 1.078 1.022 0.741 0.559 0.482 0.324 0.295 0.136

p-value 0.622 0.561 0.046 0.030 0.041 0.034 0.055 0.003
Excess Variance Ratio 0.852 0.928 0.894 0.894 1.001 1.296 1.732 2.018

p-value 0.191 0.212 0.293 0.387 0.560 0.784 0.917 0.941

This table reports the variance ratios and their respective p-values obtained through randomization of monthly nominal, 
real and excess log-returns of various market return measures. Turkish Lira and US Dollar denominated headline indices 
are reported by Borsa Istanbul. Market return refers to the value-weighted lira denominated average returns of all stocks as 
computed by the authors. Real and excess returns are computed using the inflation and risk-free rates with the respective 
currencies.

In order to take the impact of inflation out, we test the variance ratios of real returns for each 
market return type by finding the inflation adjusted real returns. As expected, real returns display a 
strong mean reversion for all holding periods longer than 12 months even when the returns are lira 
denominated. The mean reversion in real market returns is independent from the currency base. In 
fact, lira denominated real returns display a statistically stronger mean reversion as can be seen in 
the p-values in Table 3.
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Excess market returns are measured as the difference between monthly market returns and the risk-
free interest rate in the appropriate currency. Dollar denominated excess returns yield a variance 
ratio dynamic similar to real returns, which is not far off the nominal returns itself. Since dollar 
inflation and interest rates are relatively low, this result is expected. Excess market returns in lira 
denominated measures, however, yield surprising results. They do not display a discernible mean 
reversion or aversion pattern until longer holding periods. The mean aversion second comma is 
unnecessary or momentum, tendency in longer holding periods is not even statistically significant. 
The excess returns can be considered as realized risk premia that the equity market earns over the 
risk-free rate. As it shows significant difference with real return dynamics, we further analyze this 
phenomenon. Time-varying equity risk premia can be considered as the expected excess returns. 
Since this expectation drives the pricing in the market, next analysis documents the dynamics of 
equity risk premium.

Figure 3: Variance Ratios of Lira–Denominated BIST-100 Returns for Different Holding Periods

These figures display the variance ratios of monthly nominal and real log-returns for BIST 100 Turkish Lira de-
nominated index from 1 month to 120 months holding periods. The confidence interval is based on the distri-
bution of variance ratios in 1000 randomized shuffles of return time series.
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Figure 4: Variance Ratios of Dollar–Denominated BIST-100 Returns for Different Holding Periods

These figures display the variance ratios of monthly nominal and real log-returns for BIST 100 US Dollar deno-
minated index from 1 month to 120 months holding periods. The confidence interval is based on the distribu-
tion of variance ratios in 1000 randomized shuffles of return time series.

Figure 5: Variance Ratios of Value–Weighted Market Returns for Different Holding Periods
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These figures display the variance ratios of monthly nominal and real log-returns for the overall market from 1 
month to 120 months holding periods. Market return refers to the value-weighted lira denominated average re-
turns of all stocks as computed by the authors. The confidence interval is based on the distribution of variance 
ratios in 1000 randomized shuffles of return time series.

4.2. Mean Reversion in Time–Varying Equity Risk Premia

In order to assess the dynamics of the time series of estimated monthly equity risk premium, the 
same variance ratio test which was applied to market returns before has also been applied to the 
estimated equity risk premium series. The previous tests revealed that the Turkish equity market 
returns showed significant mean reversion in real returns. The current test would reveal if the 
mean reversion observed in market returns can be attributed to a similar property in the equity risk 
premium.

Table 3: Variance Ratios and Statistical Tests of Significance for Time-Varying Risk Premia and Excess Returns

1 month 6 months 24 months 36 months 48 months 72 months 96 months 120 months
PANEL A: TIME-VARYING EQUITY RISK PREMIA WITH PORTFOLIOS

Variance Ratio 2.209 1.350 0.719 0.635 0.622 0.447 0.331 0.371
p-value 0.996 0.984 0.035 0.067 0.125 0.090 0.065 0.155

PANEL B: TIME-VARYING EQUITY RISK PREMIA WITH INDIVIDUAL STOCKS
Variance Ratio 2.694 1.407 0.680 0.573 0.546 0.417 0.334 0.369

p-value 0.998 0.988 0.021 0.025 0.057 0.058 0.050 0.112
PANEL C: EXCESS MARKET RETURNS

Variance Ratio 0.852 0.928 0.894 0.894 1.001 1.296 1.732 2.018
p-value 0.191 0.212 0.293 0.387 0.560 0.784 0.917 0.941

This table reports the variance ratios and their respective p-values obtained through randomization of the monthly time-
varying equity risk premia and realized excess returns for the 30-year period between January 1990 and December 2019. The 
risk premia are computed via cross sectional regressions with either 20 Beta-based portfolios or individual stocks. Excess 
market return is the difference between the market return, the value-weighted lira denominated average returns of all stocks 
as computed by the authors, and the Turkish lira risk-free rate. All returns are converted to continuously compounded log 
returns for variance ratio calculations.
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The variance ratios for equity risk premium yield very strong results in both the short term and the 
long term, in contrast with the excess market returns that does not exhibit any discernible time series 
anomalies. The variance ratio results are very similar for both methods of estimation of equity risk 
premium. The variance ratios for holding periods less than 12 months are very high and significantly 
more than unity with more than 95% confidence in all holding periods and moving up to 99.6% 
confidence in the 1-month horizon. Since this part is redundant and can be removed variance ratios 
used in this analysis take 12 months as basis, this actually implies mean reversion effect in equity risk 
premia.

More importantly, equity risk premia displays a very strong mean reversion for any holding period 
longer than 12 months with variance ratios declining rapidly and remaining well under 1 for all 
holding periods. The statistical significance is more pronounced for the equity premium estimated 
via individual stocks all holding periods. As Table 4 and Figure 7 reveal, equity risk premium is 
significantly mean reverting at 5% level up to 2.5 years and 4 years for portfolio-based and individual 
stock-based estimates, respectively. The statistical significance slightly goes below 5% for longer 
holding periods.

Figure 7: Variance Ratios of Excess Returns and Time–Varying Equity Risk Premia
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These figures display the variance ratios of time-varying equity risk premium and realized excess returns from 
1 month to 120 months holding periods. The risk premia are computed via cross sectional regressions with eit-
her 20 Beta-based portfolios or individual stocks. The excess returns, which are akin to realized or ex-post mar-
ket premia, are based on value-weighted average return of all stocks and Turkish-lira risk-free rate. The confi-
dence interval is based on the distribution of variance ratios in 1000 randomized shuffles of return time series.

5. Conclusion

This study was performed to analyze the times-series behavior of the Turkish equity market. In 
particular, we aim to test if Turkish equity market displays an anomaly like mean reversion. Our 
results indicate that Turkish market returns in liras cannot be entrusted to document anomalies like 
mean reversion or momentum. The nominal returns display a strong mean aversion, or momentum, 
effect. However, that momentum is not visible in dollar denominated returns. This result makes it 
clear that the momentum effect can be purely due to inflation or related currency depreciation in 
this volatile emerging market. In fact, when analyzed through inflation-adjusted real returns, the 
market displays mean reversion in holding periods longer than 1 year with statistical significance. 
This anomaly is not apparent in excess market returns with any significant pattern.

In order to explain the mean reversion in real returns or lack thereof in excess returns, we next look at 
the expectations formed in the marketplace, as they are the more important forces in price formation. 
We use CAPM model as basis to estimate time-varying equity risk premia, which represents the risk 
premium rational investors expect from an efficient equity market. Therefore; if the market return 
and the expected equity risk premium go hand in hand, in other words if the trends in the expected 
returns match the trends in the actual returns well enough, it points towards an efficient market. 
This is a case where an apparent anomaly can be rationally explained in a dynamic setting, where the 
market efficiency, in fact, is not violated.

According to these results, this is the case for the Turkish equity market. Time series of expected 
equity risk premia seems just as mean-reverting as the market itself. Hence, the empirically observed 
mean reversion in the Turkish equity market can be attributed to the time varying nature of equity 
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risk premium demanded by the investors. Taken to its natural conclusion, Turkish equity market can 
still be considered efficient when the parameters of our model are allowed to reflect the dynamic 
nature of the market itself.
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